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Introduction
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The orbit determination problem for interplanetary spacecraft involves the calcu-

lation of spacecraft states (i.e. position and velocity) and associated estimation

uncertainty measures based on information received from measurements that are

corrupted by various errors and random noise. ‘l’he mc)tivation  for the work pre-

sented here is to improve the tools used to perform this task, Due to reductions

in resources for navigation, the number of navigation team members will be sig-

nificantly reduced for future missions. For many past missioIls,  navigation teams

had twenty members or more, and current projections are fo, three or four nav-

igation team members. Combined with the navigation requirements for future

missions, the amount of work required using cur-lent  tracking methods is a major

burden for the size of the available navigation teams. One main problem is the

lack of a systematic method for determining appropriate values  for the operational

orbit determination filter. In current interplanetary navigatioIl  practice, the oper-

ational filter parameters, such as time constants, gravitational parameters, noise

variances and system parameters, are generally selected by trial and error based

on experience and computer simulation. The filter parameters are selected and

the ]neasuremcnt  data processed. 13ased on the results, the filter parameters may

be changed and the data processed again , or the current result may be accepted.

lhrring  this iterative process, o ften the rneasurmnent  data is de-weighted, result-

ing in estimation errors that are generally higher than the data requires. This a d
hoc approach to filter tuning, in additio]l  to failing to take full advantage of the

data accuracy, requires a large number of navigation team rne]nbers  to analyze the

results from the data processing. Despite the success of this approach in the past,

the current realities do not support its continued use. The orbit determination task
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must, be complctcd with fewer analysts, similar if not greater tracking accuracy

requirements, and less tracking data. Therefore, a new methodology is required

for operational interplanetary navigation.

Onc constraint on any proposed solution to this problcm  is the utilization of

realistic  error sources and models to accurately determine if tllc  selected approach

will be useful in the actual tracking process. III addition, tile  proposed solution

must integrate easily with current navigation approaches. A Kalman filter ap-

proach will be used for future interplanetary lllissions,  so tllc solution must be

compatible with this recursive filter method. Due to the desire to minimize track-

ing station use, personnel costs and complexity, conventional ])opplcr  and ranging

data will bc the data types used in this analysis. Finally, the approach must be

implemcntab]c  in a modular fashion. This is not only to avo)d  extensive nlodifi-

cation of existing orbit determination software, but to allow the testing of other

approaches in a smoother and less complicated fashion.

Along with the change from the least-squares filter to the Kalman filter, another

major change in the current filtering practice being studied is reflected in the

so-called enhanced jilter [7]. Current practice involves modc~ing  certain Earth

platform and transmission media effects as consider pararnctcrs  in the filter. In

other words, these parameters are allowed to affect the covaria~)ce of the estimated

state, but arc not themselves estimated. The enhanced filtcj calls for inclusion

of these parameters in the estimated state vector. When comvared  with current

filtering practices, the result is increased accuracy in the state estimates [7], This

filtering strategy is currently being tested using real flight data from Galileo [8].

The cnhanccd Kalman filter is utilized in this paper.

‘l’he approach taken here is to utilize radiolnetric  (Doppler and range) data

and to establish navigation improvements through the use of adaptive  Jhering
algorithms. There are benefits to this approach in addition to the systematic tun-

ing of the opcrationa]  filter. Suppose the process noise and/or data noise profile

changes during the mission, for example, if the acceleration protile  of the spacecraft

chatlgcs  significantly due to unmodelcd  venting. Then, the ]Iccd for a non-labor

intensive method to detect c}langcs in the data profile and to ~Joint  to the source of

the changes is clear. A Kalman  filter bank (proposed here) will allow the analyst to

model several filters simultaneously and directly compare the results automatically.

The filter bank will determine which filter is operating optimally (where optimal

is prccisc]y defined later) with respect to the measurement data, thus helping the

process of selecting the filter paralneters. For tile case where the process and/or
measurement noise profile changes, the filter bal)k  can dc-select a given filter and

C}]OOSC  a different filter that more closc]y  mate.}les the curl  CIIt environment. In

this way, in addition to the cstablishrnellt  of a systematic lncthod  to choose the
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operational filter parameters and to detect environmental cl]anges,  the orbit de-

termination process can be completed with fcwel team members, while potentially

increasing the accuracy and timeliness of the results.

The adaptive estimation solution described i~l this work SOIVCS the orbit deter-

mination problem very effectively given the real-world constraints. The adaptive

filter can be used as an effective tool to assist the navigation engineer in selecting

filter parameters, thus allowing a closer match of the filter parameters to the true

values, leading to a potcntial]y  more accurate navigation solution. In addition, this

method requires fewer hours of processing and analysis and allows  a smaller group

of analysts to determine accurate navigation solutions. More importantly, the long

term objective of this study is to develop an adaptive filtering methodology that

can be used for processing of actual mission data. It is shown in the subsequent

analysis that this objcctivc  is successfully achieved.

Several methods were investigated in terms of ability to determine both process

noise and rneasuremcnt  noise parameters and to be general enough to handle a

time-varying problem. Since the Kalman filter is already in usc and is planned  for

future usc for orbit determination, a method utilizing this approach is desirable for

implementation reasons. It was found that the IIlost desirable approach, in terms

of these constraints, is the Magill  Kalman filter bank [1]. This approach, also

known as the Multiple Model Estimation Algorithm (M MEA), has been shown to

be a practical algorithm in solving real-world problems [2], [3], [4]. One important

problem that can be solved most effectively using; the hlagill  filter bank is that of

hypothesis testing, which is to choose from a finite set of filters which hypothesized

filter in the bank is the correct one [5], [6]. The Kalman filter bank implemented

in this study is utilized as a hypothesis tester, The proposed methodology is a

practical extension to current navigation practices for intcrp]anetary  spacecraft.

in addition, the cost of integrating this approach with the current operational

enhanced Kalman filter is minimal. The Kalman filter dots not need to be modified

in any way to implement this scheme. All that is required froln  the filter are pre-

update measurement residuals and the covariance associated with these residuals

at each data point, which are computed by the Kalrnan filtfx  already. Finally,

the assumptions that are required for application of the filter bank are the same

that govern the use of a single Kalrnan  filter. Tlius,  if the problem is formulated

to work properly with the Kalman filter, the filter bank approach can be used

without modification [6].

‘1’hc scenario chosen for this study was the Mars Pathfinder mission, scheduled

for launch in Dcccmbcr 1996. Specifics of the mission plan including launch and

arrival dates and the tracking scenario are presented (See l’igure  1). A model

was dcvclopcd  to represent accurately, but with lnodcrate  colnplcxity,  the actual
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data received by the filter during a mission. This model, consisting of the space-

craft state, solar radiation pressure effects, small unmodeled  acceleration effects,

transmission media effects and Earth platform effects, is used to generate tracking

data.

Various computational algorithms were studied to solve the adaptive filtering

problem, and all the methods have the characteristic of increasing in computa-

tional cost as the number of filter parameters to be determined increases. lror this

reason, it is desirable to determine only the most critical error sources and to con-

centrate effort in the analysis on these areas. The less significant errors will remain

as parameters in the filter, but will not participate in the adaptation, A special

type of covariance  analysis, or error budget analysis, is utilized here to catalog the

contributions of particular error sources or error source groups to the overall esti-

mation error. The error budget is presented for X-band range only, Doppler only,

and Doppler plus range measurement scenarios for the Mars }’athfinder  mission,

Results are given for several different sets of noise parameters included in the

adaptive scheme. Tracking schemes considered include range only and Doppler

only. Results for the range case estimati~]g  paralneters  for the lneasurernent  noise

and nongravitationa]  acceleration (N GA) parameters are showrl in Figures 2 and 3.

The first figure shows the weighting factors for each  filter coli,puted  by the filter

bank. The numbering used corresponds to that shown in ‘J’able 1, where the scaling

is relative to the parameters used to generate the simulated data. The second figure

shows the encounter plane plots of the error covariance and the spacecraft state

estimates relative to the truth.

The main result is the demonstrated ability of the adaptive Kalman filter bank

to determine the under] ying measurement and process noise strengths. ln addition,

results for the changing noise strengths case show the ability of the filter bank to

detect ellvironmental  and/or spacecraft changes.
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Figure  1: Mars Patllfindcr  Trajectory
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F’igurc 2: Wc~ghting  Coefic.ients  - Measurement and NGA l’arametcrs  Adapted
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F’igurc 3: Encounter Results - Measurement and NGA ]Ja,ramcters  Adapted
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